Online Handwritten Signature Verification Using Neural Network Classifier Based on Principal Component Analysis

نویسندگان

  • Vahab Iranmanesh
  • Sharifah Mumtazah Syed Ahmad
  • Wan Azizun Wan Adnan
  • Salman Yussof
  • Olasimbo Ayodeji Arigbabu
  • Fahad Layth Malallah
چکیده

One of the main difficulties in designing online signature verification (OSV) system is to find the most distinctive features with high discriminating capabilities for the verification, particularly, with regard to the high variability which is inherent in genuine handwritten signatures, coupled with the possibility of skilled forgeries having close resemblance to the original counterparts. In this paper, we proposed a systematic approach to online signature verification through the use of multilayer perceptron (MLP) on a subset of principal component analysis (PCA) features. The proposed approach illustrates a feature selection technique on the usually discarded information from PCA computation, which can be significant in attaining reduced error rates. The experiment is performed using 4000 signature samples from SIGMA database, which yielded a false acceptance rate (FAR) of 7.4% and a false rejection rate (FRR) of 6.4%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Handwritten Signature Recognition Using Wavelet Neural Network

ـــ ـ Automatic signature verification is a wellestablished and an active area for research with numerous applications such as bank check verification, ATM access, etc. Most off-Line signature verification systems depend on pixels intensity in feature extraction process which is sensitive to noise and any scale or rotation process on signature image. This paper proposes an off-line handwritten ...

متن کامل

Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition

Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...

متن کامل

A neural network approach to off-line signature verification using directional PDF

Abstraet--A neural network approach is proposed to build the first stage of an Automatic Handwritten Signature Verification System. The directional Probability Density Function was used as a global shape factor and its discriminating power was enhanced by reducing its cardinality via filtering. Various experimental protocols were used to implement the backpropagation network (BPN) classifier. A...

متن کامل

Non-Invertible Online Signature Biometric Template Protection via Shuffling and Trigonometry Transformation

This paper describes a novel approach to a cancelable template protection scheme that secures online handwritten signature samples in the reference database of a biometric verification system. We propose a renewable-noninvertible transformation process named Bio-Trigono comprising two consecutive steps. First, a shuffling scheme is applied to a signature sample to attain the renewability proper...

متن کامل

An Investigation on the Performance of Hybrid Features for Feed Forward Neural Network Based English Handwritten Character Recognition System

Optical Characters Recognition (OCR) is one of the active subjects of research in the field of pattern recognition. The two main stages in the OCR system are feature extraction and classification. In this paper, a new hybrid feature extraction technique and a neural network classifier are proposed for off-line handwritten English character recognition system. The hybrid features are obtained by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014